top of page

Trayectoria en caída libre


Ecuación del movimiento

De acuerdo a la segunda ley de Newton, la fuerza que actúa sobre un cuerpo es igual al producto de su masa por la aceleración que adquiere. En caída libre sólo intervienen el peso (vertical, hacia abajo) y el rozamiento aerodinámico en la misma dirección, y sentido opuesto a la velocidad. Dentro de un campo gravitatorio aproximadamente constante, la ecuación del movimiento de caída libre es:

La aceleración de la gravedad lleva signo negativo porque se toma el eje vertical como positivo hacia arriba.

Trayectoria en caída libre

Caída libre totalmente vertical

El movimiento del cuerpo en caída libre es vertical con velocidad creciente (aproximadamente movimiento uniformemente acelerado con aceleración g) (aproximadamente porque la velocidad aumenta cuando el objeto disminuye en altura, en la mayoría de los casos la variación es despreciable). La ecuación de movimiento se puede escribir en términos la altura

Dónde:

- son la aceleración y la velocidad verticales.

- es la fuerza de rozamiento fluido dinámico (que aumenta con la velocidad).

  • Si, en primera aproximación, se desprecia la fuerza de rozamiento, cosa que puede hacerse para caídas desde pequeñas alturas de cuerpos relativamente compactos, en las que se alcanzan velocidades moderadas, la solución de la ecuación diferencial (1) para las velocidades y la altura vienen dada por:

Dónde: v0 es la velocidad inicial, para una caída desde el reposo v0 = 0 y h0 es la altura inicial de caída.

  • Para grandes alturas u objetos de gran superficie (una pluma, un paracaídas) es necesario tener en cuenta la resistencia fluido dinámica que suele ser modelizada como una fuerza proporcional a la velocidad, siendo la constante de proporcionalidad el llamado rozamiento aerodinámico kw:

En este caso la variación con el tiempo de la velocidad y el espacio recorrido vienen dados por la solución de la ecuación diferencial

Nótese que en este caso existe una velocidad límite dada por el rozamiento aerodinámico y la masa del cuerpo que cae:

  • Un análisis más cuidadoso de la fricción de un fluido revelaría que a grandes velocidades el flujo alrededor de un objeto no puede considerarse laminar, sino turbulento y se producen remolinos alrededor del objeto que cae de tal manera que la fuerza de fricción se vuelve proporcional al cuadrado de la velocidad:

Dónde:

- es el coeficiente aerodinámico de resistencia al avance, que sólo depende de la forma del cuerpo.

- es el área transversal a la dirección del movimiento.

- es la densidad del fluido.

- es el signo de la velocidad.

La velocidad límite puede calcularse fácilmente poniendo igual a cero la aceleración en la ecuación

La solución analítica de la ecuación diferencial depende del signo relativo de la fuerza de rozamiento y el peso por lo que la solución analítica es diferente para un cuerpo que sube o para uno que cae. La solución de velocidades para ambos casos es:

Dónde:

Si se integran las ecuaciones anteriores para el caso de caída libre desde una altura y velocidad inicial nula y para el caso de lanzamiento vertical desde una altura nula con una velocidad inicial se obtienen los siguientes resultados para la altura del cuerpo:

Caída libre ( y ):

El tiempo transcurrido en la caída desde la altura hasta la altura puede obtenerse al reordenar la ecuación anterior:

Lanzamiento vertical ( y ):

Si la altura es aquella en que la velocidad vertical se hace cero, entonces el tiempo transcurrido desde el lanzamiento hasta el instante en que se alcanza la altura puede calcularse como:

Se puede demostrar que el tiempo que tarda un cuerpo en caer desde una altura hasta el suelo a través del aire es mayor que el que tarda el mismo cuerpo en alcanzar la altura máxima de si es lanzado desde el suelo. Para ello basta con probar la desigualdad siguiente:

Sabiendo que

Intuitivamente la diferencia de tiempos es clara, en el tiro hacia arriba la velocidad inicial es mayor por lo que la fuerza de rozamiento promedio a lo largo de la trayectoria también es mayor que la que se alcanza en tiro hacia abajo.

Caída libre parabólica y casi-parabólica

Cuando un cuerpo cae en caída libre pero no parte del reposo porque tiene una velocidad no nula, entonces la trayectoria de caída no es una recta sino una curva aproximadamente parabólica. La ecuación de la trayectoria en coordenadas cartesianas viene dada por

Rozamiento -kwv. Trayectorias casi parabólicas con rozamiento proporcional a la velocidad, para cinco valores diferentes de la velocidad horizontal β = 1,5 - 2,5 - 3,5 - 4,5, desde una altura h = 7δ.Rozamiento -Cwv2. Trayectorias casi parabólicas con rozamiento proporcional al cuadrado de la velocidad, para cinco valores diferentes de la velocidad horizontal β = 1,5 - 2,5 - 3,5 - 4,5, desde una altura h = 7δ.

donde x es la coordenada horizontal (eje de abcisas) e y la coordenada vertical (eje de ordenadas).

La expresión de la velocidad vertical debe reescribirse en función de la coordenada x teniendo en cuenta que t = x/vx. Pueden distinguirse los siguientes casos:

  • Para un cuerpo en caída libre sin rozamiento, la trayectoria es exactamente una parábola dada por:

  • Cuando se incluye el rozamiento aerodinámico, la trayectoria no es exactamente una parábola. Por ejemplo para una fuerza de rozamiento proporcional a la velocidad como en la (2) la trayectoria resulta ser:

Dónde:

Para una fuerza de rozamiento proporcional al cuadrado de la velocidad, la integración de las ecuaciones del movimiento es más compleja, presuponiendo fuerzas de rozamiento independientes en dirección horizontal y vertical proporcionales al cuadrado del valor de la componente:

La trayectoria viene dada por:

Dónde:

Las figuras adjuntas muestran la forma de las trayectorias para cinco valores diferentes del parámetro β para una misma altura de caída (medida en unidades de longitud δ).

Caída libre desde grandes alturas

Artículo principal: Órbita

La caída libre desde grandes alturas en un campo gravitatorio aproximadamente esférico, como es el caso del campo gravitatorio terrestre, requiere correcciones importantes ya que en ese caso ni la magnitud ni la dirección de la fuerza gravitatoria son constantes. Concretamente para un campo gravitatorio newtoniano con simetría esférica, cuando podemos ignorar el rozamiento con la atmósfera, la trayectoria es un arco elipse.


Premios

Musicas

Archivo
Tomorrowland 
Síguenos
bottom of page